Modeling Multicomponent Gas Separation Using Hollow-Fiber Membrane Cohtactors

نویسنده

  • D. T. Coker
چکیده

A model developed for multicomponent gas separation using hollow-fiber contactors permits simulation of cocurrent, countercurrent, and crossflow contacting patterns with permeate purging (or sweep). The numerical approach proposed permits simulation to much higher stage cuts than previously published work and provides rapid and stable solutions for cases with many components, with widely varying permeability coefficients. This new approach also permits the rational and straighqorward incorporation of efjects such as permeate sweep, pressure-dependent permeability coeficients, and bore side pressure gradients. Simulation results are presented for separation of commercially significant multicomponent gas mixtures using polymer permeation properties similar to those of polysulfone. The effect of permeate pqing on separation per$ormance is explored for air separation. The influence of pressure ratio on hydrogen separation performance for a refinery stream is presented. Air is modeled as a four-component mixture of 02, N2, C02, and Hz0 and the refinery stream contains five components: Hz, CH4, C2 H4, C2 H6, and C3 Hs. In air separation, permeate purging with a small fraction of the residue stream provides a very eflective method for improving module efficiency for drying but is not eflcient for improving nitrogen purity or recovery. In multicomponent mixtures, maxima in the compositions of components of intermediate permeability may be observed as a function of distance along the hollow fiber. This result suggests the use of membrane staging to capture these components at their maximum concentratbn.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Effective Iterative Algorithm for Modeling of Multicomponent Gas Separation in a Countercurrent Membrane Permeator

 A model is developed for separation of multicomponent gas mixtures in a countercurrent hollow fiber membrane module. While the model’s solution in countercurrent module usually involves in a time consuming iterative procedure, a proper initial guess is proposed for beginning the calculation and a simple procedure is introduced for correcting the guesses, hereby the CPU time is decreased ess...

متن کامل

Mathematical Modeling of Carbon Dioxide Removal from the CO2/CH4 Gas Mixture Using Amines and Blend of Amines in Polypropylene: A Comparison between Hollow Fiber Membrane Contactor and Other Membranes

In this work, a mathematical model is established to describe the removal of CO2 from gaseous mixtures including CH4 and CO2 in a polypropylene hollow fiber membrane contactor in the presence of conventional absorbents such as monoethanolamine (MEA), methyldiethanolamine (MDEA), and a blend of them. Modeling was performed in axial and radial directions under the fully-wet condition for counterc...

متن کامل

Gas Permeation Modeling through a Multilayer Hollow Fiber Composite Membrane

In this study, a time-dependent 2D axisymmetric model of a multilayer hollow fiber composite membrane for gas separation is proposed. In spite of the common multilayer membranes, which a dense layer coated on a porous support layer and subjected into the feed stream, here, the porous support is exposed to the feed gas. In this regard, the governing equations of species transport are developed f...

متن کامل

Mathematical Modeling and Numerical Simulation of CO2 Removal by Using Hollow Fiber Membrane Contactors

Abstract In this study, a mathematical model is proposed for CO2 separation from N2/CO2 mixtureusing a hollow fiber membrane contactor by various absorbents. The contactor assumed as non-wetted membrane; radial and axial diffusions were also considered in the model development. The governing equations of the model are solved via the finite...

متن کامل

Modeling and Simulation of CO2 Absorption Enhancement in Hollow-Fiber Membrane Contactors using CNT–Water-Based Nanofluids

Absorption of CO2 from a gas mixture containing CO2 and nitrogen by water-based CNT nanofluids in gas–liquid hollow fiber membrane contactor was modeled and solved using COMSOL Multiphysics 5.4. The model assumed partial wetting of the membrane, along with diffusion in the axial and radial directions. In addition, Brownian motion and grazing effects were both considered in the model. The main c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998